Products
Research Areas
COVID-19
Resources
Login
Quick Order
Cart Cart lightblue
Login
Registration enables users to use special features of this website, such as past
order histories, retained contact details for faster checkout, review submissions, and special promotions.


Fields marked with a * are required.

Login
Quick Order
Contact Us

Location


Corporate Headquarters

Vector Laboratories, Inc.
6737 Mowry Ave
Newark, CA 94560
United States

Telephone Numbers



Customer Service: (800) 227-6666 / (650) 697-3600


Contact Us



Additional Contact Details

Login
Registration enables users to use special features of this website, such as past
order histories, retained contact details for faster checkout, review submissions, and special promotions.


Fields marked with a * are required.

Login
Quick Order

CLOCK

clock circadian regulator

Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. CLOCK has an intrinsic acetyltransferase activity, which enables circadian chromatin remodeling by acetylating histones and nonhistone proteins, including its own partner ARNTL/BMAL1. Regulates the circadian expression of ICAM1, VCAM1, CCL2, THPO and MPL and also acts as an enhancer of the transactivation potential of NF-kappaB. Plays an important role in the homeostatic regulation of sleep. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The CLOCK-ARNTL2/BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1.

Gene Name: clock circadian regulator
Synonyms: CLOCK, BHLHe8, Clock homolog (mouse), Clock (mouse) homolog, Clock circadian regulator, HCLOCK, KIAA0334, KAT13D
Target Sequences: NM_004898 NP_004889.1 O15516

Publications (4)

1
Circadian Transcription. Thinking outside the E-Box. Muoz E, Brewer M, Baler R. The Journal of biological chemistry. 2002 277:36009-17. [PubMed:12130638]
2
Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene. Xu CX, Krager SL, Liao DF, Tischkau SA. Toxicological sciences : an official journal of the Society of Toxicology. 2010 115:98-108. [PubMed:20106950] [PMC:PMC2855348]
3
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. eLife. 2012 1:e00011. (ChrIP; Mouse) [PubMed:23150795] [PMC:PMC3492862]
4
Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes. Litlekalsoy J, Rostad K, Kalland KH, Hostmark JG, Laerum OD. BMC cancer. 2016 16:549. (WB, IHC-P; Mouse, Human) [Full Text Article] [PubMed:27465361] [PMC:PMC4964027] Related Antibodies: LS-B278.
more

☰ Filters
Products
ELISA Kits (3)
Cell-Based (1)
Sandwich (2)
CLOCK (3)
Human (2)
Mouse (2)
Rat (1)
96-Well Microplate (1)
96-Well Strip Plate (2)
No (3)
Adherent Cell Cultures (1)
Cell Lysates (2)
Tissue Homogenates (2)
CLOCK ELISA Kit
Select
Cell-Based
96-Well Microplate
Mouse, Human, Rat
Colorimetric - 450nm (TMB)
Adherent Cell Cultures
1 Plate/$534
CLOCK ELISA Kit
Select
Sandwich
96-Well Strip Plate
Human
0.313 - 20 ng/ml
Colorimetric - 450nm (TMB)
Cell Lysates, Tissue Homogenates
1 Plate/$792
CLOCK ELISA Kit
Select
Sandwich
96-Well Strip Plate
Mouse
0.156 - 10 ng/ml
Colorimetric - 450nm (TMB)
Cell Lysates, Tissue Homogenates
1 Plate/$811
Viewing 1-3 of 3 product results


Filtered By:
Products: ELISA Kits


If you do not find the reagent or information you require, please contact Customer.Support@LSBio.com to inquire about additional products in development.

PLEASE NOTE

For RESEARCH USE ONLY. Intended for use by laboratory professionals. Not intended for human diagnostic or therapeutic purposes.

The data on this page has been compiled from LifeSpan internal sources, the National Center for Biotechnology Information (NCBI), and The Universal Protein Resource (UniProt).